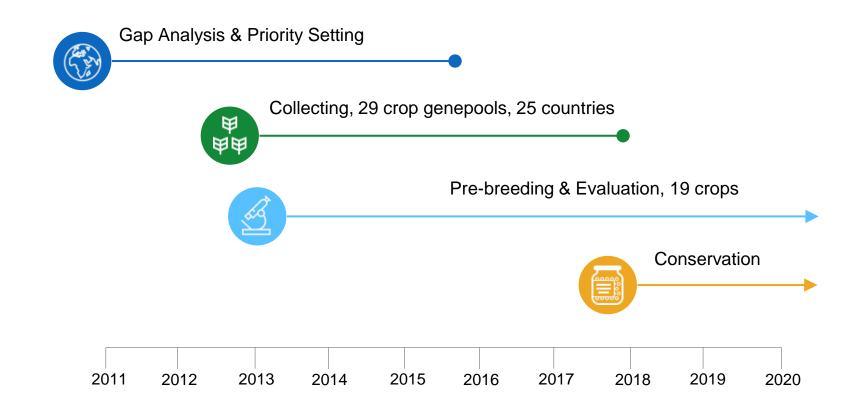

The legacy of the Crop Wild Relatives (CWR) Project

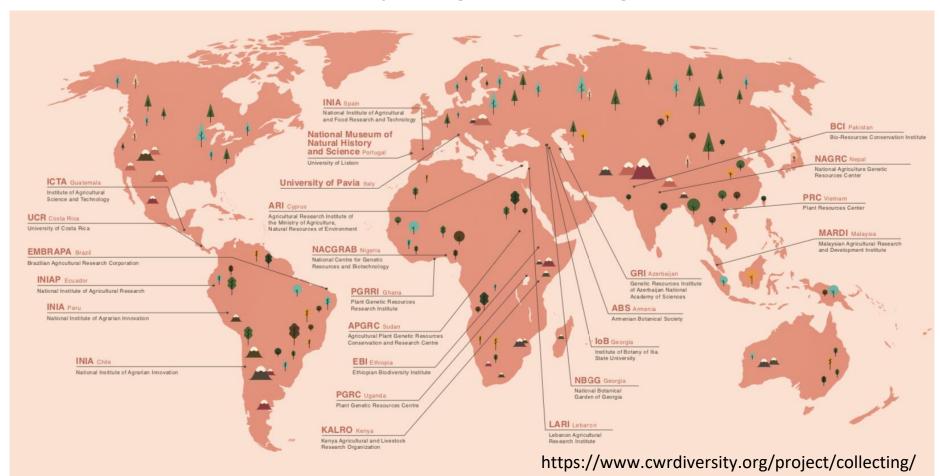
Pre-breeding achievements

Benjamin Kilian, Crop Trust
March 1, 2022

The CWR Project: Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives

- Unique, global initiative to facilitate the use of CWR in breeding new, improved crop varieties
- Supported by the Norwegian Government
- USD 50 million
- 10 years (2011- Dec 2021)
- http://www.cwrdiversity.org/





The CWR Project: four major components

The CWR Project: a global collecting effort

Bean collecting projects

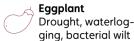
- ➤ 103 accessions of 10 species collected in 4 countries:
- ➤ El Salvador (2012)
- Costa Rica (2016-2018)
- > Ecuador (2016-2018)
- Guatemala (2016-2018)

Species	Number of accessions
Phaseolus augustii	7
Phaseolus coccineus	16
Phaseolus costaricensis	4
Phaseolus leptostachyus	6
Phaseolus lunatus	42
Phaseolus microcarpus	6
Phaseolus oligospermus	1
Phaseolus talamancensis	1
Phaseolus vulgaris	15
Phaseolus xanthotrichus	5

CWR Project: Pre-breeding crops and target traits (simplified)

Barley Drought and heat tolerance, disease and pest resistance

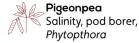
Bean Heat, drought, waterlogging and root rot resistance

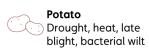


Carrot Heat, salt and drought tolerance

Chickpea Drought tolerance

Finger millet Drought, blast, Striga

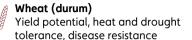

Grasspea Heat, toxicity, Orabanche



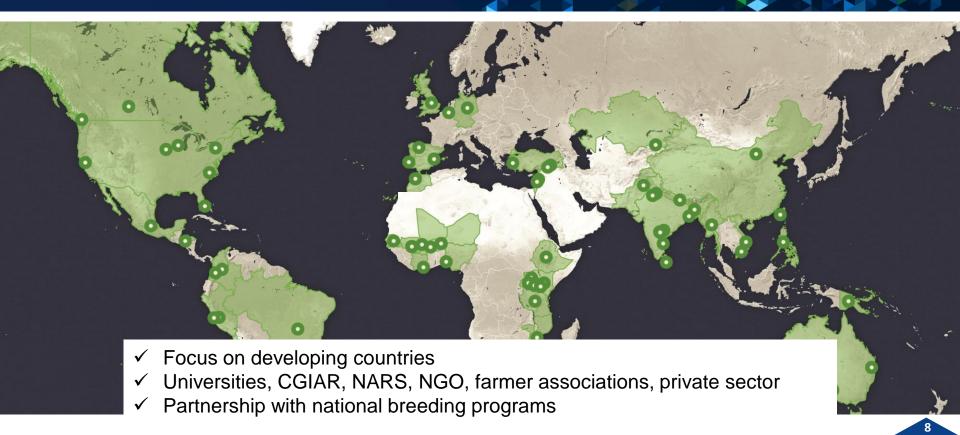
Lentil Drought, Orabanche. Stemphyllium

Pearl millet Heat tolerance and blast resistance

Drought tolerance


Sorghum Heat tolerance. water-use efficiency, rust

Sunflower Drought tolerance, early flowering


Sweetpotato Heat tolerance

Focus on climate change related traits

CWR Project: Impact through partnerships

Pre-breeding partnerships: 100+ partners, 50 countries, 19 crops

CWR Project: Impact through capacity building Carrot pre-breeding in Bangladesh

Farmers training at Ishurdi (heat stress)
December 2019

Farmers training at Lalmonirhat (drought stress)
January 2020

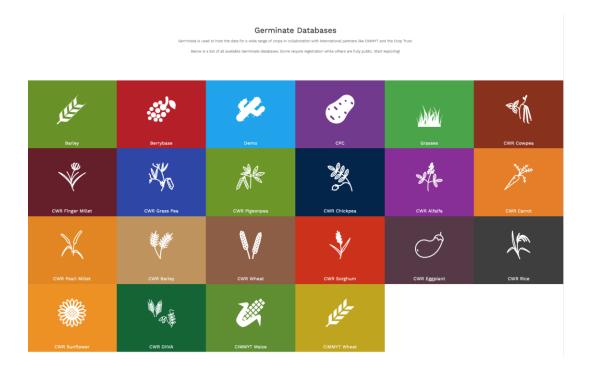
CWR Project: Impact through capacity building Summary statistics

Summary of capacity-building activities as of December 2021

Details	Collecting	Pre-breeding and evaluation	Information systems
Number of trainees	174	12,369*	143
Number of countries	45	46	36
Women (%)	44	40	51

- √ 211 fellows & students trained in pre-breeding & evaluation
- * includes more than 10,000 farmers

CWR Project: Impact through seeds Most promising pre-bred lines conserved in genebanks


Crop	CWR-derived material	Genebank details
	(ILs/crosses) conserved	
	in genebanks	
Alfalfa	40	Australian Pastures Genebank (Australia)
Banana*	In progress	
Barley	24	ICARDA (Morocco)
Carrot**	In progress	
Chickpea	9,673	Aegean Agricultural Research Institute (Turkey); Australian Grains Genebank (Australia); ICARDA; USDA National Plant Germplasm System (USA)
Common bean	47	Alliance of Bioversity International and CIAT genebank (Colombia)
Cowpea	64	IITA (Nigeria)
Durum wheat	19	ICARDA (Morocco)
Eggplant	185	INRAE-PACA (France); Universitat Politècnica de València Genebank (Spain)
Finger millet	7	ICRISAT (India)
Grasspea***	In progress	
Lentil	24	ICARDA (Morocco)
Pearl millet	17	ICRISAT (India)
Pigeonpea	4	ICRISAT (India)
Potato	29	CIP (Peru)
Rice	110; 1,497	Genebank of the Mekong Delta Development Research Institute (MDI), Can Tho University (Vietnam); IRRI (Philippines)
Sorghum	1,227	Australian Grains Genebank (Australia); Genetic Resources Research Institute (Kenya)
Sunflower	360	USDA North Central Regional Plant Introduction Station (USA)
Sweetpotato	868	CIP (Peru)
Total	14,195	

CWR Project: Impact through seeds Improved varieties

First CWR-derived varieties released and most advanced lines

Crop	Country	Variety name	Lead partner institute	Release year	Key traits
Alfalfa	China and Kazakhstan	Zhongcao No. 3	Grasslands Research Institute, Chinese Academy of Agricultural Sciences, SARDI	2019	Cold tolerance, broadly adapted to continental environments, high yield
Durum wheat	Lebanon	Zagharin2	ICARDA	2020	Drought tolerance, high yield, good pasta-making quality
Durum wheat	Morocco	Jabal	ICARDA	2021	Strong farmer preference, high yield, large grains
Potato	Peru	CIP-Matilde	International Potato Center	2022	Late blight resistance
Rice	Vietnam	L102-5	Can Tho University, Vietnam	2022	Resistant to blast and brown planthopper, tolerant to salinity and acid sulfate soils, wide adaptation and high yield

CWR Project: Impact through data & information Managing and sharing data through Germinate

https://germinateplatform.github.io/get-germinate/

CWR Project: Impact through data and information Germinate Crop databases

Summary statistics for 15 Germinate pre-breeding & evaluation databases

Project Crop	Germplasm	Trait datapoints	Markers
Eggplant	3,335	39,741	7,160
Sunflower	7,884	93,318	47,207
Chickpea	23,458	146,666	0
Finger millet	1,677	32,521	84,055
Pigeonpea	2,864	73,423	3,687
Rice	4,904	90,801	6,352
Sorghum	2,797	19,530	17,118
Alfalfa	2,687	61,551	0
Cowpea	13,114	157,680	0
Pearl millet	2,400	39,645	0
Barley	33,242	9,416	578,294
Grasspea	5,597	16,110	42,439
Wheat*	621	10,293	0
Carrot*	248	-	104,956
DIIVA (Barley, Lentil & Wheat)	2,878	47,402	0

Welcome to the Crop Wild Relatives Eggplant database

DOI: 10.1002/csc2.20418

SPECIAL ISSUE: ADAPTING AGRICULTURE TO CLIMATE CHANGE: A WALK ON THE WILD SIDE

Crop Science special issue: Adapting agriculture to climate change: A walk on the wild side

Benjamin Kilian¹ | Hannes Dempewolf¹ | Luigi Guarino¹ | Peter Werner¹ | Clarice Coyne² | Marilyn L. Warburton³

Crop Science 2021 61(1)

- 19 papers on 13 crops
- from the pre-breeding & evaluation partners of the CWR Project

✓ As of 1 March 2022, 146 journal articles, 12 theses, one book, 13 book chapters had been published.

¹ Global Crop Diversity Trust, Platz der Vereinten Nationen 7, Bonn 53113, Germany

USDA ARS Plant Germplasm Introduction and Testing Research Unit, 50 Johnson Hall, Pullman, WA 99164, USA

³ USDA ARS Crop Host Plant Resistance Research Unit, Box 9555 Mississippi State, Starkville, MS 39759, USA

CWR Project: The bean pre-breeding project (2016-2019)

Project partners:

- Alliance of Bioversity International and CIAT (Colombia)
- Universidad Zamorano (Honduras)
- Corporación Colombiana de Investigación Agropecuaria (Colombia)

Its objectives were:

- ✓ to establish a reliable methodology for screening Phaseolus against waterlogging
- ✓ to evaluate bean wild relatives for tolerance to heat and waterlogging and resistance to the root rot pathogen, Pythium myriotylum.

CWR Project: Highlights of the bean pre-breeding project (2016-2019)

- ✓ Numerous wild *Phaseolus* accessions showed tolerance to waterlogging and resistance to root rot.
- ✓ Two wild P. acutifolius accessions tolerant to heat stress and P. vulgaris (cultivated) accessions tolerant to waterlogging at the seedling stage were identified.
- ✓ These accessions were crossed to develop new populations using a foundational breeding strategy entailing a **bridging genotype (VAP1)** compatible with common bean and *P. acutifolius*.
- ✓ The resulting interspecific hybrid bean populations were evaluated under controlled conditions at CIAT and under field conditions.
- ✓ Infrastructure was established for evaluating tolerance of beans to waterlogging at the seedling stage under greenhouse conditions.

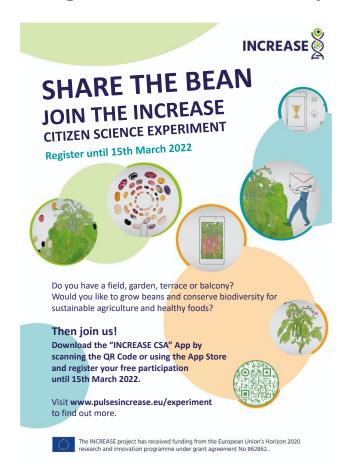
CWR Project: The bean evaluation project (2019-2021)

Project partners:

- Alliance of Bioversity International and CIAT (Colombia)
- Instituto de Investigação Agrária de Moçambique (IIAM, Mozambique)
- Escuela Agricola Panamerica Zamorano and Zamorano University (Honduras)
- AGROSAVIA (Colombia)

Interspecific populations generated during the pre-breeding project were shared with breeding partners, who received appropriate training to evaluate this material under heat stress under field conditions.

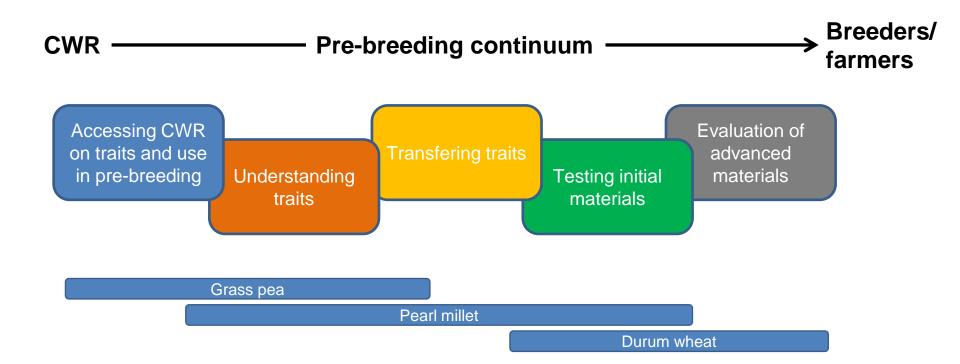
CWR Project: Highlights of the bean evaluation project (2019-2021)


- ✓ In Honduras, 51 CWR-derived lines were considered promising in terms of drought tolerance.
- ✓ Preliminary results indicate that 128 CWR-derived lines were able to grow and produce pollen under heat stress in southern Mozambique.
- ✓ At CIAT, the structure of the genetic mapping population was identified, and wild P. acutifolius genomic segments were successfully introgressed into a P. vulgaris background.
- ✓ Studies on genetic associations using yield, seed weight, pod wall dry weight, stem dry weight and pod harvest index revealed significant associations for heat stress.
- ✓ Data has been deposited in the Dataverse repository.
- √ 47 pre-bred lines derived from P. acutifolius have been deposited in the CIAT genebank and are accessible through an SMTA.

Conclusion & Future directions

- Despite the COVID-19 challenges faced by everybody, CWR Project partners found creative ways to continue their work.
- Impressive progress has been made in introgressing beneficial traits from CWR.
- Promising CWR-derived lines have been identified that justify the expense and effort.
- Farmer involvement from the beginning: often possible and very advantageous.
- The BOLD Project takes up where the CWR Project left off, building on and strengthening its legacy and delivering practical outcomes in farmers' fields.

Calling all citizen scientists – grow old bean varieties to promote agrobiodiversity



Outline

- The legacy of the CWR Project
- Pre-breeding achievements of the CWR Project
- The Bean projects
- Outlook

CWR Project: pre-breeding continuum

CWR Project: Impact through capacity building

211 fellows & students have been trained in pre-breeding and evaluation projects

Crop	Post-doctoral fellows	PhD students	MSc students	Undergraduate students
Alfalfa	2	3	2	2
Banana			2	1
Barley	1	4	4	
Carrot		7	18	18
Common bean			1	1
Chickpea		2		1
Cowpea	1	3	2	1
Durum wheat	2	1		
Eggplant	2	6	19	4
Finger millet		2	1	
Grasspea		1		1
Lentil	5	3	4	1
Pearl millet				
Pigeonpea		1		
Potato		3	1	2
Rice		1	4	51
Sorghum	1	2	1	
Sunflower	2	3	3	4
Sweetpotato		2		2
TOTAL	16	44	62	89

CWR Project: Impact through publications

Debouck, D. G., Araya-Villalobos, R., & Chaves-Barrantes, N. (2018). *Phaseolus angucianae* (Leguminosae: Phaseoleae), a new bean species from Fila Cruces of southeastern Costa Rica. *Journal of the Botanical Research Institute of Texas*, 12(2), 507–520.

Porch, T. G., Beaver, J. S., Debouck, D. G., Jackson, S. A., Kelly, J. D., & Dempewolf, H. (2013). Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change. *Agronomy*, *3*(2), 433–461. https://doi.org/10.3390/agronomy3020433

Biodiversity for Opportunities, Livelihoods and Development (BOLD-CWR)

January 2022

Think BOLD: A Global Project for Our Future

BOLD will build on the success of the Crop Wild Relatives Project and expand its work to help ensure **food security** in the face of **climate change**.

BOLD at a Glance

Duration: 10 years (2021-2030)

\$ Value: USD 58 million

Donor: Norwegian Government

Work Packages

- Capacity and resource development
- 2. Making new diversity available
- 3. Genebanks and seed systems
- 4. Safety duplication at Seed Vault
- 5. Communications, engagement and outreach
- 6. Project management

